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We demonstrate the existence of solitons in special optical metamaterials with Kerr law nonlinearity. The F-expansion 
scheme is utilized to obtain solitons and traveling wave solutions to the governing wave evolution model. The existence of 
such solutions requires certain constraint conditions to be satisfied. 
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1. Introduction 
 

Soliton pulse propagation properties in complex 

materials with simultaneous negative real dielectric 

permittivity and magnetic permeability, also known as 

double negative (DNG) materials, have attracted much 

attention in recent research [1-20]. These types of 

materials are not found in nature, but rather need to be 

fabricated through material processed engineering. 

Therefore these materials are called metamaterials. The 

novelty of these engineered materials with their possible 

applications to support short duration optical soliton pulses 

is investigated in this paper. 

Recently reported metamaterials in optical regions 

have shown promise to make an effective optical 

waveguide, according to Shalaev [15]. Theoretical study 

of nonlinear optical pulse propagation in metamaterial 

waveguides has been reported recently by some coauthors 

of the present paper [8]. Optical waveguide can be 

implemented by using slab structure where the core is 

regular positive-indexed material and claddings are DNG 

materials. As a realistic implementation of optical 

waveguide, a photonic crystal with gold nanoparticle in 

the crystal hole also shows negative refractive properties. 

Simulation demonstrates both forward and backward 

propagating waves in optical waveguides implemented in 

photonic crystal metamaterials that support soliton wave 

propagation. The dispersion and loss characteristics of the 

waveguide contribute a pivotal role in wave propagation 

properties. Presence of backward wave that is observed in 

the transmission simulation, demonstrates negative 

refraction [8]. 

This paper will carry out the integration of the model 

equation that describes the propagation of solitons and 

other waves through these metamaterial waveguides. The 

modified F-expansion scheme is employed to carry out the 

integration of generalized nonlinear Schrӧdinger equation 

(NLSE) with additional terms that account for the 

metamaterials. Solitons and traveling wave solutions will 

be retrieved from this model by the application of the F-

expansion algorithm.  

 

 

2. Overview of the modified F-expansion  
     scheme 
 

In this section, the basic algorithm of modified F-

expansion method is introduced. The protocol is as 

follows: 

Step-1: Consider a given nonlinear evolution partial 

differential equation with independent variables 

),....,,,(
21 l

xxxtxx   and dependent variable u(x) as 
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in which the traveling wave variable transformation  
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is utilized, to explore the existence of traveling wave and 

solitary solutions. Here 
l

kkk ....,,,
21

and v are constants to 

be determined. Now, if one inserts (2) into (1), Eq. (1) is 

reduced to the nonlinear ordinary differential equation 

(ODE) as follows:  
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Step-2: Suppose that )(U  can be expressed as 
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where 
i

a  are constants to be determined, 0
m

a and 

)(F  satisfies Riccati equation of the form 

 

)()()(' 2  CFBFAF                    (5) 

 

where A, B and C are unknown constants, 0C  and m is 

an integer number that can be determined by considering 

the homogenous balance between the highest order 

nonlinear term(s) and the highest order partial derivative in 

Eq. (3). 

 

Step-3: Substitute (4) to ODE (3) and collect all terms with 

the same order of F together; then the left hand side of (3) 

is converted into a finite series in )...,,()( mmpF p  . 

Equating each coefficient of this polynomial to zero, by 

using Maple one obtains a set of algebraic equations for 

i
a , 

j
k  and v for mmi ...,,  and lj ...,,2,1 . 

Step-4: Solve the system of algebraic equations for 

i
a ,

j
k and v that can be expressed by A, B and C (or the 

coefficients of ODE (3)). Substituting these results into 

(4), one can obtain the general form of traveling wave 

solutions to Eq. (3). 

Step-5: With the help of Appendix, from the general form 

of traveling wave solutions, we can obtain various soliton-

like solutions, trigonometric function solutions and 

rational solutions of Eq. (3). 

 

 

3. Application to optical metamaterials 
 

 Consider the generalized one-dimensional NLSE, 

which in the dimensionless form is given by [1-4, 15] 
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In equation (6), the first term represents temporal 

evolution, the coefficient of a is the group velocity 

dispersion while b is the coefficient of Kerr law 

nonlinearity. On the right hand side, various additional 

terms are placed that describe different physical 

phenomena of interest here; α is the coefficient of inter-

modal dispersion, λ is the coefficient of self-steepening 

and ν is the nonlinear dispersion. Finally, 
j

  (j = 1, 2, 3), 

where 
j

  are real-valued constants, account for specific 

metamaterials that were introduced earlier and reported in 

[19]. That reference dealt with controllable Raman soliton 

self-frequency shift in metamaterials with nonlinear 

electric polarization.  

Later, the integrability aspects of equation (6) were 

studied in [1-4]. This model was also studied in details by 

additional authors [12, 14, 16, 17]. More recently, soliton 

propagation in negative-indexed materials with self-

steepening effect was studied in details in [11]. In that 

paper, the authors applied Darboux transform to solve the 

governing equation and thus reported bright 1-soliton 

solutions in 2014 [11]. The effect of self-steepening was 

also studied earlier by Zhou et. al. in 2012, where sub-

ODE approach was employed [20]. 

The present paper will apply F-expansion scheme to 

solve the governing equation (6). In order to solve (6), we 

use the complex ansatz solution 

 
 ieUtxq )(),(  , )( vtx        (7) 

 

where )(U  represents the shape of the soliton and v is 

the velocity of the wave. Since ),( txq  is a complex-

valued wave profile, there exists a phase component that is 

given by 
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where k  is the soliton wave number while   is the 

frequency, and   is the phase constant. Now Eq. (6), with 

the hypothesis (7), splits into real  
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and imaginary part 
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From (10), it is possible to observe that 'U  and '2UU  are 

linearly independent functions and hence their coefficients 

must be zero, which implies the constraint conditions on 

the model coefficients and parameters 
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By balancing U
3
 with U” in Eq. (9), we get m = 1. 

Thus, we may choose 
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Substituting (12) into (9) and using (5), the left hand 

side of Eq. (9) can be converted into a finite series in F; 

equating each coefficient in this series to zero yields a 

system of algebraic equations for 
0

a , 
1

a , 
1

a , k ,  , 
1

 , 

2
  and 

3
 . Solving the algebraic equations using Maple, 

we find the following solutions of 
0

a , 
1

a , 
1

a , k ,  , 
1

 , 

2
  and 

3
 .  

Case-1: When A = 0, we have the following solutions: 
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and 
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Case-2: When B = 0, we have 
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Case-3: When A=B = 0, we have 
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Substituting these solutions into (12) and using 

Appendix, we can obtain different soliton-like solutions, 

trigonometric function solutions and rational solutions to 

Eq. (9) (where we left the same type solutions out). They 

are listed in the following subsection. 

 
 

3. 1 Solitonic, periodic, singular periodic and plane  

       wave solutions 

 

(I) When A = 0, B = 1, C = -1; from Appendix, then 
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(II) When A = 0, B = -1, C = 1; from Appendix, then 
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(III) When A =
2

1
, B = 0, C = -

2

1
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Thus 
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(IV) When A =1, B = 0, C = -1;   tanh)( F  or 

 hcoth . By Case 2, we have soliton-like solutions of 

Eq. (9) 
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(V) When A =
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;     tansec)( F  or 

    cotcsc  . By Case 2, we have trigonometric 

function solutions of Eq. (9) 
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(VII) When A = 1, B = 0, C = 1; from Appendix, then 

 .tan)(  F  By Case 2, we have trigonometric function 

solutions of Eq. (9) as 
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(VIII) When A = -1, B = 0, C = -1; from Appendix, then 
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(XI) When A = 0, B = 0, C  0; from Appendix, then 
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where C and λ are arbitrary constants and C  0. 

Thus, in all cases, the solutions to the generalized NLSE 

are written as 
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for 1  j  17. 

 

 

4. Conclusions 
 

 This paper successfully applied the modified F-

expansion scheme to solve the model evolution equation 

that governs the dynamics of soliton and wave propagation 

through special optical metamaterials. It is interesting to 

note that the solutions obtained by this integration scheme 

can be dark solitons, singular solitons, plane waves and 

singular periodic solutions. It is, however, only Kerr law 

nonlinearity that is taken into consideration. In future, 

other laws of nonlinearity will be studied. These include 

the power law, parabolic law, dual-power law, log law and 

others. The results of these nonlinear media will be 

reported elsewhere. 

 

 

Appendix 
 

Relations between A, B, C and the corresponding F() 

in Riccati equation: 
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